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Who am I
● Researcher at CENSUS S.A.

○ Vulnerability research, reverse engineering, exploit development, 
binary and source code auditing, tooling for these

● Before that I was working (postdoc) on applied 
cryptography at Trinity College Dublin
○ Designing, implementing, attacking network security protocols

● Heap exploitation abstraction obsession; joint work with 
huku (who would be here if Greece didn’t have 
compulsory military service ;)



Warning
● No pictures
● No diagrams
● No charts
● (almost) No math
● Lots of text (I promise to try not to just read slides)
● Perpetual work-in-progress



Outline
● Introduction and motivation
● Related work
● Types and categories of heap bugs
● Heap attacks and exploitation abstraction

○ Identifying and defining reusable primitives
● Heap exploitation modeling



Motivation
● Heap bugs are the most common type of bugs
● Understanding of

○ allocator’s medata,
○ allocator’s allocation/deallocation algorithms,
○ how the target application interfaces to the allocator,
○ how application-specific data are placed on the heap,
 in order to create conditions aiding exploitation

● Complicated bugs
● Increasingly sophisticated mitigation technologies



Objective
● Heap exploitation is becoming increasingly harder 

and more complicated
● Need to find ways to reduce the time required for 

heap attacks/exploitation
● Our goal is not to perform an academic exercise, i.

e. create a formal model and publish
● Practical, reusable heap attack primitives that 

reduce exploit development time/effort



Abstraction
● Abstraction and the definition of reusable primitives is a 

valuable tool to tackle complexity
● “Design patterns” in software engineering

○ Reusable solution to a commonly occurring problem within a 
given context

● Sure, (heap) exploitation is much more complicated than 
writing software (it is) but the concept applies

● Some previous work on exploitation* abstraction
* The term “exploitation” in this talk is used in the context of memory corruption      
vulnerabilities



Related work
● Exploitation blueprint (Valasek, Smith)

○ Examples on modern common applications (bug to exploit)
○ Showcased reusable techniques

● Automated exploitation grand challenge (Vanegue)
○ Goal: reduced or no human interaction
○ Identified categories of exploit primitives
○ Model heap operation with a probabilistic transition system 

(Markov chains)
○ Random walks to reach exploitable heap states



Related work
● Weird machines (Flake, Bratus, et al)

○ State machine of the target after memory corruption
○ New (unexpected by the developer) states now reachable
○ Violation of security specification, i.e. exploitation

● Modeling of exploitation (Miller)
○ Finite set of primitives for transitioning between the states 

of a target under a memory corruption bug
○ Exploitation techniques combine these primitives to reach 

desired end states



Heap bugs
● Buffer overflow
● Use-after-free
● Dangling/stale pointer
● Double free



Buffer overflow
● Allocating a buffer on the heap

○ Perhaps with a wrong size due to a wrong calculation
○ Then writing more data to it

● Writing to a heap array with a for loop
○ That relies on a wrongly calculated loop limit

int a, b;

if(a > 0)

char *dest = (char *)malloc(a);

memcpy(dest, src, a - b);



Dangling/stale pointer
● Have an allocated heap item

○ For example, an object (instance of a class)
● Have a pointer to it
● Perform an action that frees the heap item

○ Out-of-sync reference count of the heap item
○ Without invalidating the pointer

● The pointer is now dangling/stale
○ Pointing to a free heap "slot"

● Somehow the slot is reclaimed with data/object of your 
choosing (must be of the same size as the freed one)



Use-after-free
● What follows from a dangling/stale pointer bug
● The “slot” is usually reclaimed via spraying

○ The bug may allow reclaiming without spraying 
● Depending on what the pointer was pointing to and 

with what the heap “slot” is reclaimed
○ Object pointer
○ Vtable pointer

● Just dereferencing the pointer may not cause a crash 
(unless heap integrity tools are used)



Double free
● The deallocation API call (e.g. free()) is called twice on the 

same memory address
● Depending on the allocator may or may not lead to 

corruption of its metadata
○ Linked-list-based allocators
○ Bitmap-based allocators

char *dest = (char *)malloc(n);

if(some_condition)

free(dest);

free(dest);



Attacking heap managers
● Interfacing to the allocator
● Heap arrangement / heap feng shui
● Metadata attacks
● Adjacent region attacks
● Application-specific data attacks



Interfacing to the allocator
● As the attacker we don’t have direct access to the 

allocator’s API
● We can only allocate/deallocate indirectly via the 

target application’s exposed functionality
○ Operating system kernel: system calls, IOCTLs, 

opening/closing devices, drivers’ APIs
○ Browser: Javascript, VBscript, ActionScript
○ Media player: Metadata tags, containers within containers



Enumerating interfaces
● We need to a way to trace allocations and frees while 

interacting with the target application
● Debugger/programmatic debugger

○ Breakpoints at allocator’s malloc-like and free-like functions
○ Logging details and continuing

■ Size of allocation
■ Returned address of allocation
■ Address to be freed
■ Backtrace

○ Quite slow and error prone for real targets



Dynamic interface mapping
● Utilize a dynamic binary instrumentation (DBI) framework like 

PIN or DynamoRIO
○ Many public examples available, everybody has their own
○ Image based filtering
○ Can be tweaked to be faster and less error prone than a debugger
○ Only for userland target applications

● Kernel module that hooks kernel’s malloc-like and free-like 
functions
○ A lot of noise
○ Manual stack unwinding to create filters
○ Current version not very polished, but works



Static interface mapping
● Very useful to have the sizes of objects/structures

○ To target reclaiming free “slots” on the heap
● Source code of target and/or debug information (e.g. 

PDB/DWARF files) are sometimes available
● We can parse the source code or the binary files with the 

debug data for the sizes of object/structures
● Clang for source code
● PDB/DWARF parsers for binaries with debug information

○ Microsoft’s DIA (Debug Interface Access)
○ lldb.utils.symbolication Python module



Static interface mapping
● How to reach the allocations of the identified interesting 

objects/structures?
● We can use basic binary/source static analysis to find possible 

call paths between the function that does the allocation and a 
function we can interface to (Javascript API, system call, etc)
○ Clang
○ IDA/IDAPython
○ Understand

● Fast and imprecise; no constraint collection/solving and/or 
symbolic/concolic execution (more on this later)



Interface primitives
● Primitive #1: Allocate
● Primitive #2: Free
● Primitive #3: Allocate controlled size
● Primitive #4: Allocate controlled type



Mitigation: ProtectedFree
● Microsoft has introduced a new heap exploitation 

mitigation in Internet Explorer that breaks primitive #2
● That is, our ability to interface from Internet Explorer to the 

underlying allocator’s free operation
● Per thread list that holds heap “slots” waiting to be freed
● A free operation adds to the list instead of actually 

deallocating memory (mark-and-sweep GC)
● Introduces non-determinism to the interface



Heap arrangement
● Depending on the bug, especially if it is a buffer overflow, we 

need to be able to arrange the heap in a favorable (to our goal) 
way

● When the bug is triggered the heap must be in a predictable 
state to position our data

● “Heap feng shui” (Sotirov) for web browsers
● Understand the allocator’s behavior

○ Runtime observation
○ Reversing it’s allocation/deallocation functions
○ E.g.: FIFO, the first heap item freed is the first returned



Heap predictability
● At any random given point in time the heap is in an 

unpredictable state for us
● Using the interface primitives and our understanding of the 

allocator’s behavior we build primitives that help us bring the 
heap in a predictable state, e.g.
○ A number of same-sized/typed allocations to “defrag” the 

heap and get fresh heap “slot” containers (e.g. pages)
○ Subsequent ones contiguous
○ Free every other allocation to create free “slots”
○ Just an example, study your target allocator



Arrangement primitives
● Primitive #5: Force contiguous allocations
● Primitive #6: Create holes (free “slots”)
● Primitive #7: Reclaim a free “slot”



Mitigation: g_hIsolatedHeap
● Heap exploitation mitigation in Internet Explorer that 

breaks primitive #7
● Our ability to reclaim a “free” slot
● Different heap for certain objects deemed probable of 

being involved in use-after-free vulnerabilities
● The obvious bypass here is of course to find a suitable to 

our goal object that is allocated on the isolated heap
● As all mitigations, this should be viewed in tandem with 

the others (i.e. ProtectedFree)



Metadata attacks
● Building on heap arrangement primitives, we can position 

controlled allocations next to memory used by the allocator for 
its internal operation and bookkeeping
○ Since heap overflows are quite common
○ Or other ways, e.g. arbitrary inc/dec, etc

● Corrupted medata force unexpected allocator behavior that 
can lead to exploitable conditions

● These are obviously highly specific to the target allocator
● However since most allocators follow similar designs, 

experience has shown that ideas behind attacks are reusable



Unlinking attacks
● Original unlink() attack by Solar Designer (2000)

○ Old glibc unlink attack

unlink(P, BK, FD)

{

  BK = P->bk;  // what

  FD = P->fd;  // where

  FD->bk = BK; // *(where) = what

  BK->fd = FD; // *(what) = where

}   

○ Windows kernel unlink attack

Unlink(Entry)

{

  Flink = Entry->Flink; // what

  Blink = Entry->Blink; // where

  Blink->Flink = Flink; // *(where) = what

  Flink->Blink = Blink; // *(what) = where

} 



Force-return used attack
● Some allocator designs are not linked list based

○ jemalloc is a widely used bitmap based allocator
● Arrays (bitmaps) are used to represent heap memory 

areas
○ Array elements are used to represent heap “slots”
○ E.g. value of 1 for free, 0 for used

● Metadata corruptions lead to controlled indexes
● Indexing is mainly used to find the first free “slot”
● We can force the allocator to return an already used “slot”



House of Force
● Phantasmal Phantasmagoria’s Malloc Maleficarum, 

compendium of glibc heap exploitation techniques
● House of Force has some strict requirements, but is currently 

unpatched
○ Top chunk metadata (size) corruption (top chunk represents the 

heap as a whole and grows/shrinks in size)
○ Size-controlled allocation (influences the value of the returned 

heap item)
○ Another allocation (returns the heap item)

● We force the allocator to return an arbitrary address



Metadata attacks primitives
● Primitive #8: Unlink
● Primitive #9: Force-return used
● Primitive #10: Force-return arbitrary 



Adjacent region attacks
● We build on the “force contiguous allocations” and the 

“allocate controlled size/type” primitives
● Goal: place a vulnerable allocation 

(buffer/object/structure) we can overflow from next to a 
victim allocation we will overflow onto
○ That will aid us in exploitation
○ E.g. string/array/vector object that we can corrupt its size field
○ E.g. (virtual) function pointers



Application-specific data attacks
● Heap exploitation mitigations are becoming increasingly 

sophisticated and effective
● Generic exploitation approaches relying on metadata 

corruption are either
○ Already patched/mitigated
○ Patched/mitigated as soon as they become public

● Our target application (that uses the allocator) has 
objects/structures with useful to exploitation data
○ Function pointers are the canonical example of course

● Replace “function pointer” with X



Function pointers, or X
● Where X is any useful (to exploitation) construct
● Develop heuristics to search for X during runtime in the heap 

mappings of the target
○ Function pointers are easy, others (e.g. vectors) quite possible 

too
● Use pageheap-like functionality to get the backtrace of the 

allocation of the construct
○ We know where it gets allocated
○ We can find a call path to there from an interface point

● Now we know how to allocate useful constructs



Application-specific :) primitives
● Primitive #11: Force adjacent region allocations
● Primitive #12: Allocate useful construct



Heap exploitation modeling
● The identified primitives form a methodology that can be 

manually applied when investigating a new target
● How can we automate this methodology as much as 

possible?
○ Read “automate” as “reduce human interaction”

● The first step is to model the heap allocator
○ What about the next allocator?
○ Do we need to categorize the allocators and model then?
○ Will the model(s) be practically useful?

● Describe the identified primitives in this model



Simple model
● Model the heap as an array
● Heap “slots” are array elements
● Heap reads are array accesses
● Heap writes are array updates
● Metadata? Allocated or free?
● Another array (bitmap) holding state
● No straightforward modeling of more complicated metadata (or 

their corruption)
○ Linked-lists and unlink attacks for example
○ Basically we need an array for every metadata variable/pointer 



Deterministic finite automata
● A finite set of states (Q)
● A set of symbols (S, input events, aka alphabet)
● A set of transition functions (T)

○ t e T : Q x S -> Q
● A start state q e Q
● A set of final (or accepting) states F (subset of Q)
● “Stop” or “dead” states are the states that are not 

accepting, i.e. return themselves for any input 



Example (from Wikipedia)
● DFA: binary input, input must contain even 

number of 0s 
● Q = {s1 (even 0s), s2 (odd 0s)}
● S = {1, 0}
● q = s1
● F = {s1}
● t = {t1}

t1 0 1

s1 s2 s1

s2 s1 s2



DFA-based model
● The allocator’s metadata are modeled as the DFA’s transitions
● The user data placed on the heap (“slots”) are the input 

alphabet (symbols)
● Metadata corruptions

○ Corruption of the DFA’s transition tables
○ Different (than expected) output state for the same input state and input symbol
○ Attacker controls the state the DFA is in

● Data (application-specific, function pointers, etc) corruptions
○ Corruption of the input symbols
○ Attacker controls which transition function is applied, so therefore indirectly the 

state the DFA will reach



DFA-based model
● We can use proof by induction to show (prove) 

that a property we are interested in is true (holds)
○ For example that given an alphabet and a DFA that certain 

states are reachable
○ Which transitions must be corrupted and how
○ Induction: prove base step (case 0), hypothesis (case 0 to 

n), prove inductive step (case n+1)
● DFAs can be used for automated theorem proving

○ We can check invariants for the set of transitions



Practical considerations
● It’s not realistic to manually model all allocators we are interested 

in
● DBI PIN tool (Moloch) to automatically construct the deterministic 

finite automaton based on observed data, metadata, transitions
○ This however does not provide a fully representative model of 

the allocator
○ Manual fine tuning of the model based on our understanding of 

the allocator
○ Remember that the goal is not full automation, but “reduced 

human interaction”



?
QUESTIONS




